Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
2.
Genome Med ; 16(1): 28, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38347552

ABSTRACT

BACKGROUND: Children with relapsed central nervous system (CNS tumors), neuroblastoma, sarcomas, and other rare solid tumors face poor outcomes. This prospective clinical trial examined the feasibility of combining genomic and transcriptomic profiling of tumor samples with a molecular tumor board (MTB) approach to make real­time treatment decisions for children with relapsed/refractory solid tumors. METHODS: Subjects were divided into three strata: stratum 1-relapsed/refractory neuroblastoma; stratum 2-relapsed/refractory CNS tumors; and stratum 3-relapsed/refractory rare solid tumors. Tumor samples were sent for tumor/normal whole-exome (WES) and tumor whole-transcriptome (WTS) sequencing, and the genomic data were used in a multi-institutional MTB to make real­time treatment decisions. The MTB recommended plan allowed for a combination of up to 4 agents. Feasibility was measured by time to completion of genomic sequencing, MTB review and initiation of treatment. Response was assessed after every two cycles using Response Evaluation Criteria in Solid Tumors (RECIST). Patient clinical benefit was calculated by the sum of the CR, PR, SD, and NED subjects divided by the sum of complete response (CR), partial response (PR), stable disease (SD), no evidence of disease (NED), and progressive disease (PD) subjects. Grade 3 and higher related and unexpected adverse events (AEs) were tabulated for safety evaluation. RESULTS: A total of 186 eligible patients were enrolled with 144 evaluable for safety and 124 evaluable for response. The average number of days from biopsy to initiation of the MTB-recommended combination therapy was 38 days. Patient benefit was exhibited in 65% of all subjects, 67% of neuroblastoma subjects, 73% of CNS tumor subjects, and 60% of rare tumor subjects. There was little associated toxicity above that expected for the MGT drugs used during this trial, suggestive of the safety of utilizing this method of selecting combination targeted therapy. CONCLUSIONS: This trial demonstrated the feasibility, safety, and efficacy of a comprehensive sequencing model to guide personalized therapy for patients with any relapsed/refractory solid malignancy. Personalized therapy was well tolerated, and the clinical benefit rate of 65% in these heavily pretreated populations suggests that this treatment strategy could be an effective option for relapsed and refractory pediatric cancers. TRIAL REGISTRATION: ClinicalTrials.gov, NCT02162732. Prospectively registered on June 11, 2014.


Subject(s)
Neuroblastoma , Child , Humans , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/etiology
3.
J Clin Immunol ; 44(2): 42, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38231436

ABSTRACT

BACKGROUND: Patients with partial DiGeorge syndrome (pDGS) can present with immune dysregulation, the most common being autoimmune cytopenia (AIC). There is a lack of consensus on the approach to type, combination, and timing of therapies for AIC in pDGS. Recognition of immune dysregulation early in pDGS clinical course may help individualize treatment and prevent adverse outcomes from chronic immune dysregulation. OBJECTIVES: Objectives of this study were to characterize the natural history, immune phenotype, and biomarkers in pDGS with AIC. METHODS: Data on clinical presentation, disease severity, immunological phenotype, treatment selection, and response for patients with pDGS with AIC were collected via retrospective chart review. Flow cytometric analysis was done to assess T and B cell subsets, including biomarkers of immune dysregulation. RESULTS: Twenty-nine patients with the diagnosis of pDGS and AIC were identified from 5 international institutions. Nineteen (62%) patients developed Evan's syndrome (ES) during their clinical course and twenty (69%) had antibody deficiency syndrome. These patients demonstrated expansion in T follicular helper cells, CD19hiCD21lo B cells, and double negative cells and reduction in CD4 naïve T cells and regulatory T cells. First-line treatment for 17/29 (59%) included corticosteroids and/or high-dose immunoglobulin replacement therapy. Other overlapping therapies included eltrombopag, rituximab, and T cell immunomodulators. CONCLUSIONS: AIC in pDGS is often refractory to conventional AIC treatment paradigms. Biomarkers may have utility for correlation with disease state and potentially even response to therapy. Immunomodulating therapies could be initiated early based on early immune phenotyping and biomarkers before the disease develops or significantly worsens.


Subject(s)
Cytopenia , DiGeorge Syndrome , Humans , DiGeorge Syndrome/diagnosis , DiGeorge Syndrome/therapy , Retrospective Studies , Antigens, CD19 , Disease Progression
4.
J Clin Oncol ; 42(1): 90-102, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37883734

ABSTRACT

PURPOSE: Long-term survival in high-risk neuroblastoma (HRNB) is approximately 50%, with mortality primarily driven by relapse. Eflornithine (DFMO) to reduce risk of relapse after completion of immunotherapy was investigated previously in a single-arm, phase II study (NMTRC003B; ClinicalTrials.gov identifier: NCT02395666) that suggested improved event-free survival (EFS) and overall survival (OS) compared with historical rates in a phase III trial (Children Oncology Group ANBL0032; ClinicalTrials.gov identifier: NCT00026312). Using patient-level data from ANBL0032 as an external control, we present new analyses to further evaluate DFMO as HRNB postimmunotherapy maintenance. PATIENTS AND METHODS: NMTRC003B (2012-2016) enrolled patients with HRNB (N = 141) after standard up-front or refractory/relapse treatment who received up to 2 years of continuous treatment with oral DFMO (750 ± 250 mg/m2 twice a day). ANBL0032 (2001-2015) enrolled patients with HRNB postconsolidation, 1,328 of whom were assigned to dinutuximab (ch.14.18) treatment. Selection rules identified 92 NMTRC003B patients who participated in (n = 87) or received up-front treatment consistent with (n = 5) ANBL0032 (the DFMO/treated group) and 852 patients from ANBL0032 who could have been eligible for NMTRC003B after immunotherapy, but did not enroll (the NO-DFMO/control group). The median follow-up time for DFMO/treated patients was 6.1 years (IQR, 5.2-7.2) versus 5.0 years (IQR, 3.5-7.0) for NO-DFMO/control patients. Kaplan-Meier and Cox regression compared EFS and OS for overall groups, 3:1 (NO-DFMO:DFMO) propensity score-matched cohorts balanced on 11 baseline demographic and disease characteristics with exact matching on MYCN, and additional sensitivity analyses. RESULTS: DFMO after completion of immunotherapy was associated with improved EFS (hazard ratio [HR], 0.50 [95% CI, 0.29 to 0.84]; P = .008) and OS (HR, 0.38 [95% CI, 0.19 to 0.76]; P = .007). The results were confirmed with propensity score-matched cohorts and sensitivity analyses. CONCLUSION: The externally controlled analyses presented show a relapse risk reduction in patients with HRNB treated with postimmunotherapy DFMO.


Subject(s)
Eflornithine , Neuroblastoma , Child , Humans , Eflornithine/adverse effects , Propensity Score , Neoplasm Recurrence, Local/drug therapy , Neuroblastoma/drug therapy , Recurrence , Disease-Free Survival
5.
Int J Cancer ; 153(5): 1026-1034, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37246577

ABSTRACT

Children with relapsed/refractory (R/R) neuroblastoma (NB) and medulloblastoma (MB) have poor outcomes. We evaluated the efficacy of nifurtimox (Nfx) in a clinical trial for children with R/R NB and MB. Subjects were divided into three strata: first relapse NB, multiply R/R NB, and R/R MB. All patients received Nfx (30 mg/kg/day divided TID daily), Topotecan (0.75 mg/m2 /dose, days 1-5) and Cyclophosphamide (250 mg/m2 /dose, days 1-5) every 3 weeks. Response was assessed after every two courses using International Neuroblastoma Response Criteria and Response Evaluation Criteria in Solid Tumors (RECIST) criteria. One hundred and twelve eligible patients were enrolled with 110 evaluable for safety and 76 evaluable for response. In stratum 1, there was a 53.9% response rate (CR + PR), and a 69.3% total benefit rate (CR + PR + SD), with an average time on therapy of 165.2 days. In stratum 2, there was a 16.3% response rate, and a 72.1% total benefit rate, and an average time on study of 158.4 days. In stratum 3, there was a 20% response rate and a 65% total benefit rate, an average time on therapy of 105.0 days. The most common side effects included bone marrow suppression and reversible neurologic complications. The combination of Nfx, topotecan and cyclophosphamide was tolerated, and the objective response rate plus SD of 69.8% in these heavily pretreated populations suggests that this combination is an effective option for patients with R/R NB and MB. Although few objective responses were observed, the high percentage of stabilization of disease and prolonged response rate in patients with multiply relapsed disease shows this combination therapy warrants further testing.


Subject(s)
Cerebellar Neoplasms , Medulloblastoma , Neuroblastoma , Child , Humans , Topotecan/adverse effects , Nifurtimox/therapeutic use , Medulloblastoma/drug therapy , Neoplasm Recurrence, Local/pathology , Neuroblastoma/drug therapy , Neuroblastoma/etiology , Cyclophosphamide , Antineoplastic Combined Chemotherapy Protocols/adverse effects
6.
Cureus ; 15(2): e35061, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36938203

ABSTRACT

Background The Florida Association of Pediatric Tumor Programs (FAPTP) has used the Statewide Patient Information Reporting System (SPIRS) since 1981 to track all new cases of pediatric cancer. We reviewed the last 40 years of data to see how pediatric cancer care has evolved. Methods We retrospectively analyzed SPIRS data from 1981 through 2020 in five-year increments, looking at numbers of new diagnoses, care delivery sites, and trial enrollment in Children's Oncology Group (COG) studies. Results From 1981-2020 Florida's population increased almost 88% while the pediatric population only grew 61%. New pediatric cancer diagnoses increased 326% to over 1,000 new cases/year. The percentage of patients treated at FAPTP centers grew from 30% to 57% with an annual percentage change (APC) of 10.3% (95% Confidence Interval [CI] of 0.6 to 20.9%). The rate of COG clinical trial enrollment decreased from 32% in 1981-1985 to 20% in 2016-2020, for an APC of 8.91% (95% CI of -13.3 to -4.3%). Conclusions The striking increase in pediatric cancer cases in Florida over the last 40 years was out of proportion to the population growth. More patients received care at FAPTP centers, but a lower percentage were enrolled on COG trials.

7.
Cancer Rep (Hoboken) ; 5(11): e1616, 2022 11.
Article in English | MEDLINE | ID: mdl-35355452

ABSTRACT

BACKGROUND: Survival for patients with high-risk neuroblastoma (HRNB) remains poor despite aggressive multimodal therapies. AIMS: To study the feasibility and safety of incorporating a genomic-based targeted agent to induction therapy for HRNB as well as the feasibility and safety of adding difluoromethylornithine (DFMO) to anti-GD2 immunotherapy. METHODS: Twenty newly diagnosed HRNB patients were treated on this multicenter pilot trial. Molecular tumor boards selected one of six targeted agents based on tumor-normal whole exome sequencing and tumor RNA-sequencing results. Treatment followed standard upfront HRNB chemotherapy with the addition of the selected targeted agent to cycles 3-6 of induction. Following consolidation, DFMO (750 mg/m2 twice daily) was added to maintenance with dinutuximab and isotretinoin, followed by continuation of DFMO alone for 2 years. DNA methylation analysis was performed retrospectively and compared to RNA expression. RESULTS: Of the 20 subjects enrolled, 19 started targeted therapy during cycle 3 and 1 started during cycle 5. Eighty-five percent of subjects met feasibility criteria (receiving 75% of targeted agent doses). Addition of targeted agents did not result in toxicities requiring dose reduction of chemotherapy or permanent discontinuation of targeted agent. Following standard consolidation, 15 subjects continued onto immunotherapy with DFMO. This combination was well-tolerated and resulted in no unexpected adverse events related to DFMO. CONCLUSION: This study demonstrates the safety and feasibility of adding targeted agents to standard induction therapy and adding DFMO to immunotherapy for HRNB. This treatment regimen has been expanded to a Phase II trial to evaluate efficacy.


Subject(s)
Antineoplastic Agents , Neuroblastoma , Humans , Eflornithine/adverse effects , Pilot Projects , Induction Chemotherapy , Retrospective Studies , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Immunotherapy , Antineoplastic Agents/therapeutic use , Immunologic Factors , Genomics , RNA/therapeutic use
8.
Cancer Res ; 81(23): 5818-5832, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34610968

ABSTRACT

Children with treatment-refractory or relapsed (R/R) tumors face poor prognoses. As the genomic underpinnings driving R/R disease are not well defined, we describe here the genomic and transcriptomic landscapes of R/R solid tumors from 202 patients enrolled in Beat Childhood Cancer Consortium clinical trials. Tumor mutational burden (TMB) was elevated relative to untreated tumors at diagnosis, with one-third of tumors classified as having a pediatric high TMB. Prior chemotherapy exposure influenced the mutational landscape of these R/R tumors, with more than 40% of tumors demonstrating mutational signatures associated with platinum or temozolomide chemotherapy and two tumors showing treatment-associated hypermutation. Immunogenomic profiling found a heterogenous pattern of neoantigen and MHC class I expression and a general absence of immune infiltration. Transcriptional analysis and functional gene set enrichment analysis identified cross-pathology clusters associated with development, immune signaling, and cellular signaling pathways. While the landscapes of these R/R tumors reflected those of their corresponding untreated tumors at diagnosis, important exceptions were observed, suggestive of tumor evolution, treatment resistance mechanisms, and mutagenic etiologies of treatment. SIGNIFICANCE: Tumor heterogeneity, chemotherapy exposure, and tumor evolution contribute to the molecular profiles and increased mutational burden that occur in treatment-refractory and relapsed childhood solid tumors.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , Drug Resistance, Neoplasm , Immune Evasion , Mutation , Neoplasm Recurrence, Local/pathology , Neoplasms/pathology , Adolescent , Adult , Child , Child, Preschool , Female , Follow-Up Studies , Gene Expression Regulation, Neoplastic , Humans , Infant , Longitudinal Studies , Male , Neoplasm Recurrence, Local/drug therapy , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/immunology , Neoplasms/drug therapy , Neoplasms/genetics , Neoplasms/immunology , Prognosis , Survival Rate , Transcriptome , Young Adult
9.
Int J Cancer ; 147(11): 3152-3159, 2020 12 01.
Article in English | MEDLINE | ID: mdl-32391579

ABSTRACT

Neuroblastoma is a sympathetic nervous system tumor, primarily presenting in children under 6 years of age. The long-term prognosis for patients with high-risk neuroblastoma (HRNB) remains poor despite aggressive multimodal therapy. This report provides an update to a phase II trial evaluating DFMO as maintenance therapy in HRNB. Event-free survival (EFS) and overall survival (OS) of 81 subjects with HRNB treated with standard COG induction, consolidation and immunotherapy followed by 2 years of DFMO on the NMTRC003/003b Phase II trial were compared to a historical cohort of 76 HRNB patients treated at Beat Childhood Cancer Research Consortium (BCC) hospitals who were disease-free after completion of standard upfront therapy and did not receive DFMO. The 2- and 5-year EFS were 86.4% [95% confidence interval (CI) 79.3%-94.2%] and 85.2% [77.8%-93.3%] for the NMTRC003/003b subset vs 78.3% [69.5%-88.3%] and 65.6% [55.5%-77.5%] for the historical control group. The 2- and 5-year OS were 98.8% [96.4-100%] and 95.1% [90.5%-99.9%] vs 94.4% [89.3%-99.9%] and 81.6% [73.0%-91.2%], respectively. DFMO maintenance for HRNB after completion of standard of care therapy was associated with improved EFS and OS relative to historical controls treated at the same institutions. These results support additional investigations into the potential role of DFMO in preventing relapse in HRNB.


Subject(s)
Eflornithine/administration & dosage , Neuroblastoma/drug therapy , Child, Preschool , Disease-Free Survival , Eflornithine/therapeutic use , Female , Humans , Maintenance Chemotherapy , Male , Prognosis , Standard of Care , Treatment Outcome
10.
Gene ; 705: 67-76, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-30991098

ABSTRACT

Medulloblastoma (MB) is characterized by highly invasive embryonal neuro-epithelial tumors that metastasize via cerebrospinal fluid. MB is difficult to treat and the chemotherapy is associated with significant toxicities and potential long-term disabilities. Previously, we showed that small molecule, clotam (tolfenamic acid: TA) inhibited MB cell proliferation and tumor growth in mice by targeting, survivin. Overexpression of survivin is associated with aggressiveness and poor prognosis in several cancers, including MB. The aim of this study was to test combination treatment involving Vincristine® (VCR), a standard chemotherapeutic drug for MB and TA against MB cells. DAOY and D283 MB cells were treated with 10 µg/mL TA or VCR (DAOY: 2 ng/mL; D283: 1 ng/mL) or combination (TA + VCR). These optimized doses were lower than individual IC50 values. The effect of single or combination treatment on cell viability (CellTiterGlo kit), Combination Index (Chou-Talalay method based on median-drug effect analysis), activation of apoptosis and cell cycle modulation (by flow cytometry using Annexin V and propidium iodide respectively) and the expression of associated markers including survivin (Western immunoblot) were determined. Combination Index showed moderate synergistic cytotoxic effect in both cells. When compared to individual agents, the combination of TA and VCR increased MB cell growth inhibition, induced apoptosis and caused cell cycle (G2/M phase) arrest. Survivin expression was also decreased by the combination treatment. TA is effective for inducing the anti-proliferative response of VCR in MB cells. MB has four distinct genetic/molecular subgroups. Experiments were conducted with MB cells representing two subgroups (DAOY: SHH group; D283: group 4/3). TA-induced inhibition of survivin expression potentially destabilizes mitotic microtubule assembly, sensitizing MB cells and enhancing the efficacy of VCR.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cerebellar Neoplasms/metabolism , Medulloblastoma/metabolism , Survivin/metabolism , Vincristine/pharmacology , ortho-Aminobenzoates/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cerebellar Neoplasms/drug therapy , Dose-Response Relationship, Drug , Down-Regulation , Drug Synergism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inhibitory Concentration 50 , Medulloblastoma/drug therapy
11.
Apoptosis ; 24(1-2): 21-32, 2019 02.
Article in English | MEDLINE | ID: mdl-30610505

ABSTRACT

Current therapeutic strategies used in Ewing sarcoma (ES) especially for relapsed patients have resulted in modest improvements in survival over the past 20 years. Combination therapeutic approach presents as an alternative to overcoming drug resistance in metastatic ES. This study evaluated the effect of Clotam (tolfenamic acid or TA), a small molecule and inhibitor of Specificity protein1 (Sp1) and survivin for sensitizing ES cell lines to chemotherapeutic agent, vincristine (VCR). ES cells (CHLA-9 and TC-32) were treated with TA or VCR or TA + VCR (combination), and cell viability was assessed after 24/48/72 h. Effect of TA or VCR or TA + VCR treatment on cell cycle arrest and apoptosis were evaluated using propidium iodide, cell cycle assay and Annexin V flow cytometry respectively. The apoptosis markers, caspase 3/7 (activity levels) and cleaved-PARP (protein expression) were measured. Cardiomyocytes, H9C2 were used as non-malignant cells. While, all treatments caused time- and dose-dependent inhibition of cell viability, interestingly, combination treatment caused significantly higher response (~ 80% inhibition, p < 0.05). Cell viability inhibition was accompanied by inhibition of Sp1 and Survivin. TA + VCR treatment significantly (p < 0.05) increased caspase 3/7 activity which strongly correlated with upregulated c-PARP level and Annexin V staining. Cell cycle arrest was observed at G0/G1 (TA) or G2/M (VCR and TA + VCR). All treatments did not cause cytotoxicity in H9C2 cells. These results suggest that TA could enhance the anti-cancer activity of VCR in ES cells. Therefore, TA + VCR combination could be further tested to develop as safe/effective therapeutic strategy for treating ES.


Subject(s)
Bone Neoplasms/pathology , Cell Proliferation/drug effects , Sarcoma, Ewing/pathology , Vincristine/pharmacology , ortho-Aminobenzoates/pharmacology , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Bone Neoplasms/metabolism , Bone Neoplasms/mortality , Cell Cycle Checkpoints/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Child , Drug Synergism , Humans , Sarcoma, Ewing/metabolism , Sarcoma, Ewing/mortality , Survivin/metabolism
12.
Sci Rep ; 8(1): 14445, 2018 09 27.
Article in English | MEDLINE | ID: mdl-30262852

ABSTRACT

High risk neuroblastoma (HRNB) accounts for 15% of all pediatric cancer deaths. Despite aggressive therapy approximately half of patients will relapse, typically with only transient responses to second-line therapy. This study evaluated the ornithine decarboxylase inhibitor difluoromethylornithine (DFMO) as maintenance therapy to prevent relapse following completion of standard therapy (Stratum 1) or after salvage therapy for relapsed/refractory disease (Stratum 2). This Phase II single agent, single arm multicenter study enrolled from June 2012 to February 2016. Subjects received 2 years of oral DFMO (750 ± 250 mg/m2 twice daily). Event free survival (EFS) and overall survival (OS) were determined on an intention-to-treat (ITT) basis. 101 subjects enrolled on Stratum 1 and 100 were eligible for ITT analysis; two-year EFS was 84% (±4%) and OS 97% (±2%). 39 subjects enrolled on Stratum 2, with a two-year EFS of 54% (±8%) and OS 84% (±6%). DFMO was well tolerated. The median survival time is not yet defined for either stratum. DFMO maintenance therapy for HRNB in remission is safe and associated with high EFS and OS. Targeting ODC represents a novel therapeutic mechanism that may provide a new strategy for preventing relapse in children with HRNB.


Subject(s)
Eflornithine/administration & dosage , Maintenance Chemotherapy , Neuroblastoma/drug therapy , Neuroblastoma/mortality , Child, Preschool , Disease-Free Survival , Eflornithine/adverse effects , Female , Humans , Male , Survival Rate
13.
J Pediatr Hematol Oncol ; 39(7): 560-564, 2017 10.
Article in English | MEDLINE | ID: mdl-28562519

ABSTRACT

Secondary myelodysplastic syndrome (MDS)/acute myeloid leukemia (AML) is a rare but devastating complication of solid tumor treatment involving high-dose topoisomerase II inhibitor and alkylator chemotherapy. For relapsed or elderly MDS and AML patients ineligible for hematopoietic stem cell transplantation, epigenetic therapies, including DNA methyltransferase inhibitors and histone deacetylase inhibitors, have been utilized as palliative therapy, offering a well-tolerated approach to disease stabilization, prolonged survival, and quality of life. Literature on the use of epigenetic therapies for both primary and relapsed disease is scarce in the pediatric population. Here, we report 2 pediatric patients with secondary AML and MDS, respectively, due to prior therapy for metastatic solid tumors. Both patients were ineligible for hematopoietic stem cell transplantation due to concurrent solid tumor relapse, but were treated with the epigenetic combination therapy, decitabine and vorinostat, and achieved stabilization of marrow disease, outpatient palliation, and family-reported reasonable quality of life.


Subject(s)
Azacitidine/analogs & derivatives , Hydroxamic Acids/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Myelodysplastic Syndromes/drug therapy , Neoplasms, Second Primary/drug therapy , Adolescent , Antineoplastic Agents/therapeutic use , Azacitidine/therapeutic use , Decitabine , Drug Therapy, Combination/methods , Epigenesis, Genetic , Female , Histone Deacetylase Inhibitors/therapeutic use , Humans , Palliative Care , Quality of Life , Vorinostat
14.
Pediatr Blood Cancer ; 63(1): 39-46, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26235333

ABSTRACT

BACKGROUND: The primary aim of this Phase I study was to determine the maximum tolerated dose (MTD) of TPI 287 and the safety and tolerability of TPI 287 alone and in combination with temozolomide (TMZ) in pediatric patients with refractory or recurrent neuroblastoma or medulloblastoma. The secondary aims were to evaluate the pharmacokinetics of TPI 287 and the treatment responses. PROCEDURE: Eighteen patients were enrolled to a phase I dose escalation trial of weekly intravenous infusion of TPI 287 for two 28-day cycles with toxicity monitoring to determine the MTD, followed by two cycles of TPI 287 in combination with TMZ. Samples were collected to determine the pharmacokinetic parameters C(max), AUC(0-24), t(1/2), CL, and Vd on day 1 of cycles 1 (TPI 287 alone) and 3 (TPI 287 + TMZ) following TPI 287 infusion. Treatment response was evaluated by radiographic (CT or MRI) and radionuclide (MIBG) imaging for neuroblastoma. RESULTS: We determined the MTD of TPI 287 alone and in combination with temozolomide to be 125 mg/m(2). The non-dose-limiting toxicities at this dose were mainly anorexia and pain. The dose-limiting toxicities (DLTs) of two patients at 135 mg/m(2) were grade 3 hemorrhagic cystitis and grade 3 sensory neuropathy. CONCLUSIONS: Overall, TPI 287 was well tolerated by pediatric patients with refractory and relapsed neuroblastoma and medulloblastoma at a dose of 125 mg/m(2) IV on days 1, 8, and 15 of a 28 day cycle.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Dacarbazine/analogs & derivatives , Medulloblastoma/drug therapy , Neuroblastoma/drug therapy , Taxoids/administration & dosage , Taxoids/therapeutic use , Adolescent , Adult , Child , Child, Preschool , Dacarbazine/administration & dosage , Dacarbazine/pharmacokinetics , Dacarbazine/toxicity , Female , Humans , Infusions, Intravenous , Male , Maximum Tolerated Dose , Neoplasm Recurrence, Local , Taxoids/pharmacokinetics , Taxoids/toxicity , Temozolomide
15.
Int J Dev Neurosci ; 46: 92-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26287661

ABSTRACT

Chemotherapeutic regimens used for the treatment of Neuroblastoma (NB) cause long-term side effects in pediatric patients. NB arises in immature sympathetic nerve cells and primarily affects infants and children. A high rate of relapse in high-risk neuroblastoma (HRNB) necessitates the development of alternative strategies for effective treatment. This study investigated the efficacy of a small molecule, tolfenamic acid (TA), for enhancing the anti-proliferative effect of 13 cis-retinoic acid (RA) in HRNB cell lines. LA1-55n and SH-SY5Y cells were treated with TA (30µM) or RA (20µM) or both (optimized doses, derived from dose curves) for 48h and tested the effect on cell viability, apoptosis and selected molecular markers (Sp1, survivin, AKT and ERK1/2). Cell viability and caspase activity were measured using the CellTiter-Glo and Caspase-Glo kits. The apoptotic cell population was determined by flow cytometry with Annexin-V staining. The expression of Sp1, survivin, AKT, ERK1/2 and c-PARP was evaluated by Western blots. The combination therapy of TA and RA resulted in significant inhibition of cell viability (p<0.0001) when compared to individual agents. The anti-proliferative effect is accompanied by a decrease in Sp1 and survivin expression and an increase in apoptotic markers, Annexin-V positive cells, caspase 3/7 activity and c-PARP levels. Notably, TA+RA combination also caused down regulation of AKT and ERK1/2 suggesting a distinct impact on survival and proliferation pathways via signaling cascades. This study demonstrates that the TA mediated inhibition of Sp1 in combination with RA provides a novel therapeutic strategy for the effective treatment of HRNB in children.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Isotretinoin/pharmacology , Teratogens/pharmacology , ortho-Aminobenzoates/pharmacology , Analysis of Variance , Annexin A5/metabolism , Antineoplastic Combined Chemotherapy Protocols , Caspases/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Dose-Response Relationship, Drug , Flow Cytometry , Humans , Neuroblastoma/pathology , Time Factors
16.
PLoS One ; 10(5): e0127246, 2015.
Article in English | MEDLINE | ID: mdl-26018967

ABSTRACT

BACKGROUND: Neuroblastoma (NB) is the most common cancer in infancy and most frequent cause of death from extracranial solid tumors in children. Ornithine decarboxylase (ODC) expression is an independent indicator of poor prognosis in NB patients. This study investigated safety, response, pharmacokinetics, genetic and metabolic factors associated with ODC in a clinical trial of the ODC inhibitor difluoromethylornithine (DFMO) ± etoposide for patients with relapsed or refractory NB. METHODS AND FINDINGS: Twenty-one patients participated in a phase I study of daily oral DFMO alone for three weeks, followed by additional three-week cycles of DFMO plus daily oral etoposide. No dose limiting toxicities (DLTs) were identified in patients taking doses of DFMO between 500-1500 mg/m2 orally twice a day. DFMO pharmacokinetics, single nucleotide polymorphisms (SNPs) in the ODC gene and urinary levels of substrates for the tissue polyamine exporter were measured. Urinary polyamine levels varied among patients at baseline. Patients with the minor T-allele at rs2302616 of the ODC gene had higher baseline levels (p=0.02) of, and larger decreases in, total urinary polyamines during the first cycle of DFMO therapy (p=0.003) and had median progression free survival (PFS) that was over three times longer, compared to patients with the major G allele at this locus although this last result was not statistically significant (p=0.07). Six of 18 evaluable patients were progression free during the trial period with three patients continuing progression free at 663, 1559 and 1573 days after initiating treatment. Median progression-free survival was less among patients having increased urinary polyamines, especially diacetylspermine, although this result was not statistically significant (p=0.056). CONCLUSIONS: DFMO doses of 500-1500 mg/m2/day are safe and well tolerated in children with relapsed NB. Children with the minor T allele at rs2302616 of the ODC gene with relapsed or refractory NB had higher levels of urinary polyamine markers and responded better to therapy containing DFMO, compared to those with the major G allele at this locus. These findings suggest that this patient subset may display dependence on polyamines and be uniquely susceptible to therapies targeting this pathway. TRIAL REGISTRATION: Clinicaltrials.gov NCT#01059071.


Subject(s)
Eflornithine/pharmacology , Neuroblastoma/drug therapy , Ornithine Decarboxylase Inhibitors/pharmacology , Phenotype , Polyamines/metabolism , Adolescent , Child , Child, Preschool , Eflornithine/adverse effects , Eflornithine/pharmacokinetics , Eflornithine/therapeutic use , Etoposide/adverse effects , Etoposide/pharmacology , Etoposide/therapeutic use , Female , Humans , Infant , Male , Neuroblastoma/enzymology , Neuroblastoma/genetics , Neuroblastoma/urine , Ornithine Decarboxylase/metabolism , Ornithine Decarboxylase Inhibitors/adverse effects , Ornithine Decarboxylase Inhibitors/pharmacokinetics , Ornithine Decarboxylase Inhibitors/therapeutic use , Polyamines/urine , Recurrence , Safety , Treatment Outcome
17.
Cancer Med ; 4(6): 871-86, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25720842

ABSTRACT

The primary objective of the study was to evaluate the feasibility and safety of a process which would utilize genome-wide expression data from tumor biopsies to support individualized treatment decisions. Current treatment options for recurrent neuroblastoma are limited and ineffective, with a survival rate of <10%. Molecular profiling may provide data which will enable the practitioner to select the most appropriate therapeutic option for individual patients, thus improving outcomes. Sixteen patients with neuroblastoma were enrolled of which fourteen were eligible for this study. Feasibility was defined as completion of tumor biopsy, pathological evaluation, RNA quality control, gene expression profiling, bioinformatics analysis, generation of a drug prediction report, molecular tumor board yielding a treatment plan, independent medical monitor review, and treatment initiation within a 21 day period. All eligible biopsies passed histopathology and RNA quality control. Expression profiling by microarray and RNA sequencing were mutually validated. The average time from biopsy to report generation was 5.9 days and from biopsy to initiation of treatment was 12.4 days. No serious adverse events were observed and all adverse events were expected. Clinical benefit was seen in 64% of patients as stabilization of disease for at least one cycle of therapy or partial response. The overall response rate was 7% and the progression free survival was 59 days. This study demonstrates the feasibility and safety of performing real-time genomic profiling to guide treatment decision making for pediatric neuroblastoma patients.


Subject(s)
Molecular Targeted Therapy/methods , Neoplasm Recurrence, Local/therapy , Neuroblastoma/therapy , Adolescent , Antineoplastic Agents/therapeutic use , Child , Child, Preschool , Chronic Disease , Feasibility Studies , Female , Gene Expression Profiling/methods , Genome-Wide Association Study/methods , Humans , Male , Molecular Targeted Therapy/adverse effects , Patient Safety , Prospective Studies , RNA, Neoplasm/genetics , Sequence Analysis, RNA/methods , Time-to-Treatment , Treatment Outcome , Young Adult
18.
Target Oncol ; 9(2): 135-44, 2014 Jun.
Article in English | MEDLINE | ID: mdl-23609055

ABSTRACT

Tolfenamic acid (TA), a non-steroidal anti-inflammatory drug, is known to inhibit human cancer cells and mouse tumor growth in some cancer models; however, its anti-leukemic response has not been evaluated. TA targets specificity protein (Sp) transcription factors that mediate the expression of several genes associated with cancer including survivin, a key member of inhibitor of apoptosis protein family. Our aim was to test the anti-leukemic efficacy of TA in pre-clinical experiments. The anti-leukemic response of TA was determined using Jurkat and Nalm-6 cell lines. Cells were treated with increasing (25/50/75 µM) concentrations of TA, and cell viability was measured at 24, 48, and 72 h post-treatment. TA showed a steady and consistent decrease in cell viability following a clear dose and time dependent response. Apoptosis and cell cycle analysis was performed using flow cytometry. Results showed a significant increase in the apoptotic fraction (annexin V positive) following TA treatment, while cell cycle phase distribution analysis showed G0/G1 arrest. TA-induced apoptosis was further confirmed by examining the activation of caspase 3/7 and the expression of cleaved PARP. TA modulated the expression of critical candidates associated with the early phases of cell cycle and validated its efficacy in causing G0/G1 arrest. The Western blot results revealed that TA significantly decreases Sp1 and survivin expression. These results demonstrate that the anti-leukemic response of TA occurs potentially through targeting Sp1 and inhibiting survivin and suggest the efficacy of TA as a novel therapeutic agent for leukemia.


Subject(s)
Antineoplastic Agents/pharmacology , Leukemia/pathology , ortho-Aminobenzoates/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Apoptosis/drug effects , Blotting, Western , Cell Line , Cell Survival/drug effects , Humans , Inhibitor of Apoptosis Proteins/biosynthesis , Inhibitor of Apoptosis Proteins/drug effects , Leukemia/metabolism , Survivin
19.
Cell Physiol Biochem ; 32(3): 675-86, 2013.
Article in English | MEDLINE | ID: mdl-24030139

ABSTRACT

BACKGROUND/AIMS: The small molecule, Tolfenamic acid (TA) has shown anti-cancer activity in pre-clinical models and is currently in Phase I clinical trials at MD Anderson Cancer Center Orlando. Since specificity and toxicity are major concerns for investigational agents, we tested the effect of TA on specific targets, and assessed the cellular and organismal toxicity representing pre-clinical studies in cancer. METHODS: Panc1, L3.6pl, and MiaPaCa-2 (pancreatic cancer), hTERT-HPNE(normal), and differentiated/un-differentiated SH-SY5Y (neuroblastoma) cells were treated with increasing concentrations of TA. Cell viability and effect on specific molecular targets, Sp1 and survivin were determined. Athymic nude mice were treated with vehicle or TA (50mg/kg, 3times/week for 6 weeks) and alterations in the growth pattern, hematocrit, and histopathology of gut, liver, and stomach were monitored. RESULTS: TA treatment decreased cell proliferation and inhibited the expression of Sp1 and survivin in cancer cells while only subtle response was observed in normal (hTERT-HPNE) and differentiated SH-SY5Y cells. Mice studies revealed no effect on body weight and hematocrit. Furthermore, TA regimen did not cause signs of internal-bleeding or damage to vital tissues in mice. CONCLUSION: These results demonstrate that TA selectively inhibits malignant cell growth acting on specific targets and its chronic treatment did not cause apparent toxicity in nude mice.


Subject(s)
Antineoplastic Agents/toxicity , Body Weight/drug effects , Cell Differentiation/drug effects , ortho-Aminobenzoates/toxicity , Animals , Cell Line , Cell Survival/drug effects , Drug Evaluation, Preclinical , Hematocrit , Inhibitor of Apoptosis Proteins/metabolism , Intestines/pathology , Liver/pathology , Mice , Mice, Nude , Repressor Proteins/metabolism , Sp1 Transcription Factor/metabolism , Stomach/pathology , Survivin
20.
Tumour Biol ; 34(5): 2781-9, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23686785

ABSTRACT

Medulloblastoma (MB) is the most common malignancy in children arising in the brain. Morbidities associated with intensive therapy are serious concerns in treating MB. Our aim was to identify novel targets and agents with less toxicity for treating MB. Specificity protein 1 (Sp1) transcription factor regulates several genes involved in cell proliferation and cell survival including survivin, an inhibitor of apoptosis protein. We previously showed that tolfenamic acid (TA), a nonsteroidal anti-inflammatory drug, inhibits neuroblastoma cell growth by targeting Sp1. We investigated the anticancer activity of TA using human MB cell lines and a mouse xenograft model. DAOY and D283 cells were treated with vehicle (dimethyl sulfoxide) or TA (5-50 µg/ml), and cell viability was measured at 1-3 days posttreatment. TA inhibited MB cell growth in a time- and dose-dependent manner. MB cells were treated with vehicle or TA (10 µg/ml), and the effect on cell apoptosis was measured. Apoptosis was analyzed by flow cytometry (annexin V staining), and caspase 3/7 activity was determined using Caspase-Glo kit. The expression of Sp1, cleaved poly(ADP-ribose) polymerase (c-PARP), and survivin was determined by Western blot analysis. TA inhibited the expression of Sp1 and survivin and upregulated c-PARP. Athymic nude mice were subcutaneously injected with D283 cells and treated with TA (50 mg/kg, three times per week) for 4 weeks. TA caused a decrease of ~40 % in tumor weight and volume. The tumor growth inhibition was accompanied by a decrease in Sp1 and survivin expression in tumor tissue. These preclinical data demonstrate that TA acts as an anticancer agent in MB potentially targeting Sp1 and survivin.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Antineoplastic Agents/pharmacology , Cerebellar Neoplasms/drug therapy , Medulloblastoma/drug therapy , ortho-Aminobenzoates/pharmacology , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cerebellar Neoplasms/pathology , Female , Gene Expression/drug effects , Humans , Inhibitor of Apoptosis Proteins/genetics , Inhibitor of Apoptosis Proteins/metabolism , Medulloblastoma/pathology , Mice , Mice, Nude , Sp1 Transcription Factor/genetics , Sp1 Transcription Factor/metabolism , Survivin , Tumor Burden/drug effects , Xenograft Model Antitumor Assays , ortho-Aminobenzoates/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...